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Introduction 
MR images provide unique visual distinction between different types of tissue and tissue pathology, allowing for 
spectacular visualization of human anatomy in vivo.  Moreover, due to the unique nature of the MRI signal, it is 
possible to alter the image contrast in order to maximize the visual information in different regions of human body.  
Most tissues consist of 75±15% water and because there are two hydrogen nuclei per water molecule, the proton 
MR signal from tissues is primarily due to protons located in water molecules.  In principle, the MR signal from 
many other macromolecules (lipids and proteins, fat) should also be readily observable since they have 
approximately the same proton content.  Unfortunately, protons associated with these molecules exhibit very short 
T2 relaxation times and therefore they are MRI “invisible”.  However, the presence of large macromolecules and cell 
membranes significantly influences water protons macromolecular dynamics resulting in distinct MR characteristics 
of water in tissue. 
The MR signal is dependent on the physical and chemical processes experienced by protons associated with water 
molecules in tissue.  In general, the MRI signal is a measure of total magnetization, M,  which is a vector sum of the 
individual spins and in consequence depends on the interactions between water protons, external magnetic field, B0 
and tissue microenvironment. In particular, MRI magnetization depends on: 
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where: ρ denotes water protons spin density (proportional to the number of spins), T1,2 are the longitudinal and 
transverse relaxation time constants. BEFF denotes effective magnetic field experienced by the individual spins and 
depends on spatial and temporal magnetic field fluctuations in the tissue.  Tissue heterogeneity and the presence of 
macromolecules significantly affects MR signal.  Equation 1 demonstrates complexity of the MR contrast 
mechanisms in tissues and also shows MR sensitivity to tissue microstructure and composition.  It is precisely this 
complexity and sensititivity that makes MRI such a successful imaging modality. In this lecture, the different contrast 
mechanisms in tissues will be discussed in some detail.  
 
T1 and T2 relaxation 
The investigation of the relaxation processes of water in tissues has a rich history and spans several decades (prior 
to MRI).  In the 1950’s Shaw [1] and Odeblad [2] used proton NMR measurements to determine water content and 
other simple biophysical parameters.  The relationship of molecular motions to relaxation characteristics is based 
on the theory of Bloembergen, Purcell and Pound (BPP) published in 1948 [3] which forms the foundation for the 
understanding of relaxation mechanisms.  However, BPP theory alone offers only a qualitative description of water 
molecular dynamics in tissues (Fig.1). This is because of the presence of many types of macromolecules and cell 
membranes that result in continuum spectrum of correlation times.  According to BPP, T1 relaxation time strongly 
increases with the magnetic field whereas T2 should remain relatively constant.  This field dependence is presented 
for variety of tissues in Table 1.  
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Figure 1.  T1 and T2 relaxation as a function of molecular motion (correlation time) according to BPP theory. 
 

 

Table 1. T2 and T1 relaxation times at 3T and 1.5T measured at 37°C. Literature data is also shown. 

 
Tissue T2  - 3 T [ms] T1 – 3 T [ms] T2 – 1.5 T [ms] T1 – 1.5 T [ms] 

 
This 

study 
literature This study literature 

This 

study 
literature This study literature 

Liver 42 ± 3  812 ± 64  46 ± 6 54 ± 8[4] 576± 30  ~600[5] 

Skeletal Muscle 50 ± 4 32 ± 2[6] 1412 ± 13 1420 ±38[6] 44 ± 6 35±4[6] 1008 ± 20 1060 ± 155[6] 

Heart 47 ±11  1471 ± 31  40 ± 6 44±6[7] 1030±34  

Kidney 56 ± 4  1194 ± 27  55 ± 3 61±11[8] 690 ±30 709±60[8] 

Cartilage 0° 27 ± 3 1168 ± 18 30 ± 4 1024 ± 70 

Cartilage 55° 43 ± 2 

37 ± 4[6] 

45 - 67[9] 1156 ± 10 
~1240[6]

44 ± 5 
42 ± 7[6]

1038 ± 67 
~1060[6] 

White matter 69 ± 3  1084 + 45 1110 ±45[10] 72 ± 4 79 ± 8[11] 884 ± 50 778 ± 84[11]

Grey matter 99 ± 7  1820 ± 114 1470± 50[10] 95 ± 8 ~95[12] 1124 ± 50 
1086 ± 

228[11]

Optic Nerve 78 ± 5  1083 ± 39  77 ± 9  815 ± 30  

Spinal Cord 78 ± 2  993 ± 47  74 ± 6  745 ± 37  

Blood 275 ± 50  1932 ± 85 ~1550[13] 290 ± 30 327± 40[14] 1441 ± 120 ~1200[13]

 

There is a substantial discrepancy in literature concerning T2 relaxation time and its “apparent” decrease 
with magnetic field.  By definition, the transverse relaxation time, T2 results from time-dependent variations 
of the effective magnetic field “seen” by an average proton in the measured system. This classical T2 
characteristic (intrinsic T2 relaxation time) takes into account rotational and diffusional motion of protons in 
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tissue. It does not, however, include spatially varying magnetic fields. In particular, the presence of 
paramagnetic or supermagnetic (iron) particles or altered tissue susceptibility result in microscopic field 
variations that may not be easily compensated by spin echo (or CPMG) sequence. Therefore, measured T2 
relaxation time may depend on the external magnetic field and more importantly on the echo time, TE. It is 
not surprising therefore, to observe some decrease in measured literature T 2 values at sufficiently long 
echo times. In the case of tissue devoid of paramagnetic impurities, measured T2 represents an intrinsic T2 
value. For example, in the case of white matter, the T2 relaxation spectra do not depend on TE or field 
strength (data not shown). Moreover, accurate T2 relaxation time estimation relies on the accuracy of 180o 
pulses, which are not perfect in typical MR imaging. Finally, the T2 relaxation in tissues is typically not 
mono-exponential. Therefore, the evaluated, apparent T2 relaxation time (typically based on two TE values) 
depends on the TE chosen for final analysis (Dr Alex MacKay – private communication). In summary, the 
quantitative assessment of the T2 relaxation time should be considered with caution. 

 

Tissue Compartments and Exchange 
Due to structural heterogeneity contrast mechanisms in tissue are often complex.  It is common to approximate 
tissue microstructure using multi-compartmental tissue models (Fig.2).  

 

Intracellular            Extracellular                           Blood 
                               Plasma                     RBC’s 

MI T1I T2I ME T1E T2E MP T1P T2P MR T1R T2R

                         Macromolecules (lipids, proteins …) 
 
Figure 2.  Compartmental model of tissue.  Each compartment has its own magnetization, M and intrinsic 
longitudinal, T1 and transverse, T2 relaxation times.  The spins are allowed to exchange (arrows) between tissue 
compartments.  The macromolecular pool is not “visible” in a standard MRI experiment , due to its extremely short 
T2 relaxation (in order of μs [15]).  However, it may significantly influence MR parameters of “visible” liquid protons 
in intra, extra and blood compartments 
  
Since the physical environment of water in different tissue compartments is vastly different, there is no reason to 
believe that the intrinsic relaxation times in tissue compartments are similar.  For example T2 relaxation of red blood 
cell (RBC) is in order of 130 ms [14], whereas T2 of plasma is inapproximately 700 ms.  Therefore, one may expect 
multi-exponential behavior of T2 or T1 relaxation tissue.  In particular, T2 relaxation could be expressed as:  
 
 

[2]     )/exp()( 2∑ −=
k

kk TtMtM  

where k denotes various tissue compartments.  Figure 3 shows typical, non-monoexponential T2 data showing the 
complexity of T2 relaxation decay.   
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igure 3.  T2 decay data for muscle tissue (left) is multicomponent and thus appears upwardly curving on a 
g in a 

he physical interpretation of the relaxation decay is however, much more complex than eq. [2] would indicate.  
 
 

to have a profound effect on MR measures of 

[3] 

where M I,E the rates of decay (1/T2) and kEI 

  [4] 

 
I,E(0) denote equilibrium magnetization in each of the pools.  Eqs. 3-4 can be readily solved, showing that the total 
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logarithmic plot.  T2 decay data is analyzed using a non-negative-least squares (NNLS) algorithm [16]resultin
fitted T2 spectrum (right) which shows, as a function of T2 relaxation, the relative signal amplitude. 
 
T
This is because of the exchange of protons between various tissue compartments.  On the typical scale of the MR
experiment (~hundreds of ms) the water proton can migrate from one tissue compartment to the other or exchange
its spins with immobile protons associated with macromolecules.    
The processes of inter-compartmental exchange have been shown 
tissue such as T1 and T2 and diffusion. The exchange process can be easily incorporated into the standard Bloch 
equations describing the magnetization behavior. For example for the simplest case of the two-compartmental 
system consisting of intra and extracellular water the magnetization of each of the pools can be described as: 
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I,E denote the magnetization in intra (I) and extracellular (E) space, R
exchange ratio from extracellular to intracellular space, which has to satisfy the boundary condition, in order to 
preserve the spin densities in intra- and extracellular space: 

 
 EIEIEI kMkM )0()0( =
 

M
magnetization of two-compartmental system (MI+ME) decays bi-exponentially with two well distinguished rates that 
are illustrated in Fig.4.  In the absence of exchange (kIE=0) the total magnetization is characterized by two 
relaxation rates that are equal to the intrinsic decay rates RI,E of intra and extracellular pools.  The relative 
amplitudes of those decay rates are also equal to the populations of the intra and extracellular compartmen
(Fig.4a).  However, when the exchange is present both the decay rates and their relative amplitudes are not eq
to the intrinsic ones as shown in Fig.4b.  Finally, when the exchange rate is very fast the system decays mono-

ual 
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exponentially with the rate that is equal to the weighted average of intrinsic rates R=(MI*RI+ME*Re)/(MI+ME).  Th
scenario is often described in terms of three exchange regimes [17, 18]: 
a) Slow  (R

is 

~kIE) 
I,E>>kIE) 

b) Intermediate (RI,E
c) Fast (RI,E<<kIE) 
 

 
Figure 4.  The relaxation components of two-pool model system in the case of negligible (a), intermediate (b) and 

he exchange process between liquid tissue compartments (intra-, extracellular, plasma and blood) is thought to be 

fast exchange (c).  The dotted lines represent intrinsic relaxation rates of two pools.  Note that both the amplitudes 
and positions of relaxation rates, in the presence of exchange do not correspond to the intrinsic ones.  In the case 
of the fast exchange regime the system decays with single relaxation rate constant that is weighted average of  
 
T
mediated by the process of water molecule diffusion through the semi-permeable membranes [19]. It is common to 
express cell membrane permeability, P, in the terms of the pseudo-first order exchange rate kIE: 

[4]                                                                                              SPk =  
VIE

where S/V is a surface-to-volume ratio of the cell.  The cell membrane permeability, P, depends on the type of cell 

, 

0–3 cm s–

ines the average residence time, τ, of the water molecule inside the cell. It is therefore evident 

lls. It 

 

Magnetization Transfer 
ith protons associated with macromolecules in tissues.  This interaction is also often 

 

membrane and the mobility of water inside the cell.  The literature data concerning cell membrane permeability for 
water are very limited and P is only accurately known for RBC (2.5–3.0) x 10–3 cm s–1  [19] .  For other types of cells
P is estimated to be lower than that of RBC, but in most cases larger than 0.5 x10–3 cm s–1.  In vitro MRI 
experiments in bovine optic nerve estimated axonal and glial permeability at (0.9 ± 0.2) and (1.7 ± 0.3) x1
1, respectively [20].  
The inverse of k  defIE
that the exchange rate constant (thus τ) depends not only on P, but also on cellular size and cell shape.  It is 
apparent that water inside cells with small diameter has a relatively short τ .  In contrast, τ is large for large ce
is to be expected, since for the larger cellular size, it would take longer for an average water molecule to reach the 
cell membrane and eventually cross it. τ has been estimated previously to range from approximately 12 ms for 
RBC [21], to 600 ms for neuronal cells [22]. 
 

Water spins also interact w
expressed in terms of magnetization transfer (MT) [23] also known as the Nuclear Overhauser Effect (NOE).   In
this case however, the spin interactions are mediated by chemical (exchange of protons between water and 
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macromolecule) or physical (dipolar spin) exchange.  The mathematical formalism, however is very similar to
for inter-compartmental diffusion exchange [24]. Figure 5 shows a two-pool model that is simple yet sufficient for 
quantitative interpretation of MT.  
 

 that 

 
Figure 5.  A two-pool model of magnetization transfer exchange.  The shaded region in each pool represents 

ool A represents the liquid spins. The number of spins in this compartment is by convention normalized to unity 

 
 
 

 is 

bility of 

ecular 

saturated spins.  RA and RB represent longitudinal relaxation rates (1/T1) in liquid in macromolecular pool. R 
denotes magnetization transfer exchange. 
 
P
(M0A = 1). Pool B represents the macromolecular spins. In tissues, the number of macromolecular spins is much 
less than the liquid spins and the relative fraction is given by M0B and is typically on the order of a few percent.  In
each pool, and at any instant in time, some of the spins are in the longitudinal orientation represented by the upper
un-shaded portion of the compartment and some spins are saturated, represented by the lower shaded portion. The
partition into longitudinal spins and saturated spins depends on the prior irradiation history. In the typical MT 
experiment the off-resonance saturation pulse is applied. The effect of off-resonance irradiation on this system
different for the two pools. For pool B, the protons in the macromolecules are strongly coupled to each other 
resulting in a homogeneously broadened absorption lineshape. Thus, off-resonance irradiation results in 
progressive saturation of the ensemble of spins, with the effective saturation rate being given by the proba
absorption at the corresponding offset frequency times the average radio frequency (RF) power at the offset 
frequency. In MT experiments, the intent is to manipulate the liquid pool indirectly by saturating the macromol
pool. However, some direct saturation of the liquid pool is inevitable in this process and must be included in any 
quantitative analysis of MT effects. The MT data is often presented as a Z-spectrum [25] shown in Fig.6.  
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Figure 6.  MT experiment for white matter. Normalized residual longitudinal magnetization is plotted versus the 
frequency offset of the RF saturation pulse. Data for seven different rf amplitudes is shown.  The solid lines are the 
fit of two-pool MT model to the experimental data. 
 
Conclusion 
Contrast mechanisms in tissues are quite complex due to high degree of heterogeneity.  Quantitative MRI 
experiments are capable of revealing information about the intrinsic characteristics of protons in different tissue 
compartments and inter-compartmental exchange. 
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